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Abstract. A quantum-mechanical model of Raman scattering from a phonon bath is formu- 
lated. A master equation is derived for the density operator of the light fields alone. This 
model correctly describes the stochastic coupling of Stokes and anti-Stokes radiation 
through the phonon bath. Since quantum fluctuations are included, this treatment contains 
the spontaneous and stimulated Raman effects in one self-consistent formalism. The photon 
statistics of the light fields are obtained by the solution of a Fokker-Planck equation. 

1. Introduction 

The temporal and spatial evolution of the light field amplitudes in the Raman effect has 
been successively described by the classical coupled wave theory of Bloembergen and 
Shen (1964) (Shen and Bloembergen 1965). The strong damping of the optical phonons 
relative to that of the light field may be readily introduced in classical theory. However, 
this feature is not so readily incorporated in quantum theory and has been a limitation 
of previous quantum-mechanical treatments (Mishkin and Walls 1969, Walls 1970), 
In these quantum-mechanical approaches the electromagnetic fields and the phonons 
have been treated as single monochromatic modes. While the assumption of mono- 
chromatic light field modes is a reasonable approximation that of a single phonon 
mode has considerably less validity. In particular the deterministic coupling of the 
Stokes and anti-Stokes modes through a single phonon mode is a serious shortcoming 
of these models. 

In this paper we attempt to improve on previous quantum-mechanical models by 
considering Raman scattering from a large number of phonon modes, that is, a phonon 
bath. The Stokes and anti-Stokes modes are now coupled in a random or stochastic 
manner through the phonon bath. 

The method of the master equation widely used in laser theory (for a full discussion 
and extensive bibliography see Haken (1970)), is directly applicable to the present 
problem. By tracing out over the operators of the phonon bath an equation of motion 
for the density operator of the field modes alone is obtained. Equations of motion for 
the expectation values of the operators representing the field amplitudes and photon 
numbers may be derived from the master equation. In addition the photon distributions 
of the field modes are obtained by solving the corresponding Fokker-Planck equation. 

2. Master equation for the Stokes field 

We first consider the production of Stokes radiation in a tuned cavity by an incident 
laser field on a Raman active medium, neglecting anti-Stokes and higher order Stokes 
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production. The interaction of an incident laser beam with frequency w,, a Stokes 
mode with frequency w, and a phonon bath may be described phenomenologically by 
the Hamiltonian 

H = H ,  + H I  (2.1) 

(2.3) 

H ,  = ho,bLb, + ho,b!b, + hojbJbj (2.2) 

H , = hb,bf 1 AgbJ + hblb, 1 LTbj 
where b,, b, and bj are the annihilation operators for the laser, Stokes and phonon 
modes respectively, all obeying the boson commutation relations 

[b,, b,tl = d,,,,,. (2.4) 
The A:, the coupling constants for the Stokes interaction, contain the phase integrals 
J, exp{ - i(kL - k ,  - A j ) .  r} d3r where k,  are the wavevectors of the modes. 

In deriving the above Hamiltonian it has been assumed that at the comparatively 
long wavelengths involved in optical processes the oscillations of molecules at neigh- 
bouring lattice sites are nearly in phase, that is intermolecular interactions have been 
neglected. In this long wavelength approximation the lattice may be regarded as a 
continuum and the optical-mode vibration assumes the form of a simple harmonic 
oscillator (Pantell and Puthof 1969 0 7.3.3). The sum over lattice sites is replaced by an 
integral over the volume of the crystal. 

The finite size of the crystal destroys the translational invariance of the medium and 
momentum is no longer precisely conserved in the interaction. Hence a single Stokes 
mode generated in a finite medium is coupled to a finite band of optical phonons whose 
wavevectors kj  may differ from k, -k ,  by amounts of the order of the reciprocal of the 
dimensions of the medium. For a full discussion of the derivation of the Hamiltonian 
for Raman scattering from optical phonons see von Foerster and Glauber (1971) and 
Pantell and Puthof (1969). 

One may reduce the above trilinear Hamiltonian to a bilinear one by replacing the 
operator b, by the constant laser amplitude E ,  times the phase factor exp( - iw,t). This 
approximation, known as the parametric approximation treats the laser as effectively 
undepleted by the Raman interaction and as such is valid only for weak interactions or 
short interaction times. This restriction was lifted in the paper by Walls (1970), however, 
the interaction considered there was limited to a single phonon mode and a one photon 
scattering process. 

Employing the parametric approximation the interaction Hamiltonian H ,  becomes 

H ,  = hE, exp( - io,t)bf 1 AgbJ + h E t  exp(iw,t)b, C i?bj. (2.5) 

This interaction may be considered as an oscillator coupled to a heat bath though the 
coupling displayed here differs from the usual oscillator (a) reservoir (r,) coupling 
ar$. However, since energy is conserved due to the factor exp(-io,t) the master 
equation for the reduced density operator p of the Stokes field may be derived using 
standard techniques (see Haken 1970, Louise11 1969). The result for the markoffian 
master equation in the interaction picture is 

(2.7) 
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g(wj) is the density of the phonon modes and e,,, the mean number of phonons per mode 
in the bath is defined by 

where T is the temperature of the phonon bath and k is the Boltzmann constant. In 
the derivation of equation (2.6) the reservoir spectrum g ( o j )  and the Stokes coupling 
constant 2 ( w j )  have been assumed to be flat functions of frequency in the vicinity of 
wJ = q - w , .  This condition is expected to be fulfilled by optical phonons. Implicit 
in the derivation of the master equation is the assumption that the phonon bath is 
unaffected by its interaction with the light field. This is equivalent to the assumption 
used in the classical analysis that the phonons are so quickly damped that they are in 
their steady state. 

From the master equation we may derive equations of motion for the following 
expectation values: 

(2.10) 
d 
z(bTb,) = K(b!b,) + K ( n p h +  1) 

which are readily solved to yield for the expectation value of the field amplitude 

(bb(t)) = (b,t(O)) exP(+Kt) (2.1 1) 

and for the mean number of Stokes photons 

E,(t) = (b,t(t)b,(t)> 

= ii,(O) eKf + (iiph + l)(e"'- 1). (2.12) 

The prediction of exponential growth for the Stokes photons is a result of the para- 
metric approximation which as previously mentioned breaks down for sizeable laser 
depletion. The first term in equation (2.12) corresponding to the amplification of the 
initial Stokes field is known as the stimulated Raman effect. The second term due to the 
spontaneous Raman effect occurs even for no Stokes photons initially present (ii,(O) = 0) 
and corresponds to an amplification of the vacuum fluctuations. Emission of photons at 
the Stokes frequency may even occur from a phonon bath at zero temperature (Ep,, = 0) 
by the spontaneous Raman effect. This is an intrinsically quantum-mechanical effect 
which is not contained in classical theory. 

3. Photon statistics of the Stokes light 

Besides the mean values of the field amplitude and photon number the master equation 
also contains information on the fluctuations present in the process. 

The photon statistics may either be obtained directly by solving for the diagonal 
matrix elements pnn of the density operator (see Scully and Lamb 1967, Pike 1969) or 
by transforming the master equation into a Fokker-Planck equation dependent on 
classical variables only. In this paper we shall adopt the latter approach. 
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The transformation to the Fokker-Planck equation may be accomplished by 
assuming that a P representation exists for the Stokes field at time t 

P = J P(P, t)lP><PI d2B. (3.1) 

Here P is a quasi-probability function and Ip) is the eigenstate of the operator b,. This 
diagonal representation for the radiation field in terms of coherent states was introduced 
by Glauber (1963a, b). 

Substitution of equation (3.1) into the master equation (2.6) and using standard 
techniques (see Haken 1970, Louise11 1969) yields the following Fokker-Planck equation 

If we assume that the Stokes field is initially in a coherent state, that is 

the solution of equation (3.2) is readily shown to be 

1 exp( - IB- Bo eKri2I2 w, t )  = - n(nph + l)(eKf - 1) (gPh + l)(eKr - 1) (3.4) 

This is a gaussian distribution centred at Po eK1l2 with variance +(fiph + l)(e"' - 1). 
This describes the superposition of noise quanta from the spontaneous Raman process 
on the coherent amplification of the stimulated Raman effect. 

We note here the close similarity with the results of Mollow and Glauber (1967) 
on the parametric amplifier. The Hamiltonian they chose for parametric amplification 
may be derived from equation (2.5) by considering only one phonon mode as the idler 
mode. Their solution for the P representation at time t (Mollow and Glauber 1967 
equation (7.14)) for an initially coherent signal mode and initially chaotic idler mode 
exhibits the same characteristics as our result (equation (3.4)). 

4. Master equation for the coupled Stokes and anti-Stokes fields 

We now consider the coupling of Stokes and anti-Stokes radiation through the phonon 
bath. Higher order Stokes and anti-Stokes production is neglected. Again we assume 
monochromatic Stokes and anti-Stokes modes appropriate to cavity modes. The 
interaction may be described by the following phenomenological Hamiltonian: 

H = H o + H ,  (4.1) 
H ,  = ho,b~b,+hw,bfb,+ho,bfb,+ C hwjbfbj (4.2) 
H ,  = hb,bJ 1 Afb] + hbLbi C Ajbj + adjoint (4.3) 

where the symbols are as defined in $ 2 ;  b, is the annihilation operator for the anti- 
Stokes mode with frequency o, and obeys the boson commutation relations (equation 
(2.4)). The coupling constant for the anti-Stokes process A; contains the phase integral 
f, exp( -i(k,-k,+ki). r>  d3r. 

We again introduce the parametric approximation replacing b, by E ,  exp( - io,t). 
The basic problem here is that of two modes coupled to the same heat bath, one mode 
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coupled in the usual ar$ manner the other coupled in a a t r$  fashion. The case of two 
modes coupled to the same heat bath in the usual ar$ manner has been considered by 
Hubner (1970). The master equation in our case may be derived in an analogous fashion 
to that of Hubner's since energy is conserved apart from a frequency mismatch 

The result for the master equation in the interaction picture is 
-2A = ~ W L - W , - U , .  (4.4) 

dp 
= &,,([bsp, b,l + [br, pbs l )+~~aa( [bap ,  b i l+  [ba, pbil)+&,, exp(2iAt)([bsp, bil 

+ [bb, pbfI) + f K a s  ~ X P (  -2iAt)([bap, bsI +[b,, pbsI)+fiphtiss[[b,t, PI, bsI 

+ f iph t i s a  exp(2iA~) [[ba 9 PI, bs l  

t i s ,  = ~ ~ ~ ~ ~ , ~ l . 3 . ' i ~ , ~ / 2 / ~ L I '  

Kaa = 2ng(o,)I~a(o,)121EL12 
tias = 271g(o,)~a((o,).3."(w,)lEL~2 (4.6) 

ti5, = ti:5 

fiphKaa[[ba, PI, bfl 4- fiphK,, exp( - 2iAt) [[b:, p ] ,  b:] 

(4.5) 
where 

and oL - w, .y o, N o, - oL . 
In the derivation of the above equation the reservoir spectrum g(o) and the Raman 

coupling constants As((o), A"(w) have been assumed to be flat functions of frequency in 
the vicinity of o = U,, 

The equations of motion for the expectation values of the operators (b,) and (b:) 
which follow from the above master equation are 

'2' = +K,,( b,) + +K,,( bf) exp(2iAt) 

= -$,,(b:) -+cas(bs) exp( -2iAt). d(b,t> 
dt  

With the transformations 
(b,) = (6 , )  eiS' 

(b,) = (6,) e'"' 

these equations become 

(4.7) 

(4.8) 

(4.9) 

To simplify the results we shall henceforth ignore the small Raman dispersion 
effects in the coupling constants and set K,, = K,, = K,, = ti,, = ti. The solutions for 
(b,) and (b,) have a time dependence e'' where the gain coefficient 

G = iA i(A2 +iKA)"*. (4.10) 
We note that for perfect frequency matching (A = 0) the gain coefficient is zero. 

This, however, is not the case if laser depletion is included in the analysis (Walls 1971). 
Amplification of the vacuum fluctuations by the laser pump occurs even for A = 0 
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(Walls 1970). This, however, is a second order effect and the principal Raman gain 
occurs for large A. 

For large A we obtain two waves, one with almost entirely Stokes character which is 
amplified and one with almost entirely anti-Stokes character which is attenuated. 
These waves have the following gain coefficients: 

G, = f~ G, = 2iA-fu. (4.11) 

Thus as a justification of the quantum-mechanical model of the Raman process we 
have formulated we recover the classical results of Shen and Bloembergen (1965). 
Note that their classical model considered travelling waves and a spatial variation of the 
fields with momentum mismatch Ak. Our quantum-mechanical analysis deals with 
standing waves, and thus considers a temporal variation of the fields with frequency 
mismatch A. For a quantum-mechanical treatment of propagation problems see Tucker 
and Walls (1969) and von Foerster and Glauber (1971), also Haus (1970). 

Further we may derive equations of motion for the expectation values of the following 
operator products : 

d 
,(bJb,) = -K(bdb,) - iK(b$J) - ix(bib,)  + ~ i i , ,  

d 
z(b, 'b , )  = K(@b,> +iK<b,ib,t) +bK(bLb,) + @ph+ 1) 

d 
-(bib,) = -2iA(b;b,) +$c(bfb,)  -3K(b,tb,)-K(np, +f) 
dt 

( b J b J )  = 2iA( bib!) + $x( bi b,) - &< b,'b,) - K(nph + $1 
d -  

(4.12) 

where the transformation 

(b,b,) = exp(2i.At) ( bibb,) (4.13) 

has been introduced. These equations may be simplified by defining 

(4.14) 

where ii,(t) = ( b J b j )  and with the following change of variables: 

A = $fi:(t) + fil(t)), 
X = $((<b,) + (baTbb,t)), 

B = i(ii:(t) - iil(t)), 
(4.15) 

Y = g(bLb,) - (bib:)) 
we obtain 

(4.16) 
dX dY 
dt dt 
_ -  - -2iAY+xB, - = -2iAX. 
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The solutions to these equations vary as eKr where K assumes the values 

K = fiJ(2)A { If ( 1+- ;C) 1'21 1'2 (4.17) 

We shall consider the explicit solutions for the case of large A for which 

K = f ~ ,  ki(4A2 + K ~ ) ~ " .  (4.18) 

Here as with the field amplitudes we find one amplified solution with predominantly 
Stokes character and one attenuated solution with mainly anti-Stokes character. How- 
ever, even in this large A limit correlations between the two field modes are still present. 

5. Photon statistics for the coupled Stokes and anti-Stokes fields 

We assume that the joint density operator for the Stokes and anti-Stokes modes has a 
P representation at time t 

where la), 18) are the eigenstates of b, and b, respectively. Substitution of equation (5.1) 
into the master equation (4.5) and using standard techniques yields the following 
Fokker-Planck equation: 

where we have made the transformation of variables 

9 p = j eiaf. (5.3) = & e iAt  

The first term in equation (5.2) describes the amplification of the Stokes field, the 
second the attenuation of the anti-Stokes field and the third term describes the coupling 
between them. The final three terms describe the diffusion of noise into the system. 
This noise arises from two sources, one being the intrinsic chaotic nature of the phonon 
bath. This effect is proportional to the mean number of phonons iiph present in the bath. 
The second source is quantum noise arising from spontaneous emission into the Stokes 
mode. Though there is no spontaneous emission into the anti-Stokes field, quantum 
noise filters into the anti-Stokes radiation through the coupling to the Stokes mode. 

The Green function solution to equation (5.2) may be derived as follows. 
Introducing the real and imaginary parts of cc and p 

c1 = x l  +ix, P = x3 + ix, (5.4) 

we obtain the linear real Fokker-Planck equation of the form 

ap 4 a  1 d2P _ -  - - c m..-(x,P)+- 
at i j =  1 "axi 2 i j = l  axiaxj ni j -  ( 5 . 5 )  
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where 

and 

such that 

S -  '[mij]S = diag(;l,, ;12, ,I3, 2,) 

where 

equation (5.5) becomes 

where 

[ Y i j ]  = s-l[nij](s-l)T 

(5.9) 

(5.10) 

(5.11) 

(5.12) 

The solution to equation (5.11) corresponding to the Stokes and anti-Stokes fields 

P(Xi, 0) = 6(xi-xp), (5.13) 

initially in coherent states, that is, 

is given by Wang and Uhlenbeck (1945) 
4 

exp( - oiJ(t)-'{xi-x~ exp(J,t)) {xj-xy exp(Ajt)) 
1 

P(Xi, xp, t )  = 
x2(det [aiXt)]) ' I 2  i j =  1 

(5.14) 

where 

o.(t) = - 2 ~ i j  [I - exp{ - (ni + ~ ~ ) t > l .  (5.15) 
!J Ai+Aj  

Thus the joint P function for the Stokes and anti-Stokes fields is given by a four- 
dimensional gaussian distribution representing a mixture of coherent and chaotic 
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states (Mollow and Glauber 1967). We shall discuss the physical significance of this 
solution for large A corresponding to a large Raman gain with gain coefficients 

Re]., = R e i ,  = -+K R e i ,  = Rei ,  = +K. (5.16) 

In this case one sees that equation (5.14) describes the coherent amplification of 
the Stokes field amplitude with mean increasing as eK'!, and corresponding attenuation 
of the anti-Stokes field amplitude as e-"",. The anti-Stokes amplitude, however, does 
not decrease to zero due to its coupling to the Stokes field which drags it along. The 
variance of the gaussian distribution describes the degree of chaos or noise present in 
the coupled fields. This noise component is seen to increase with time due to the amplifi- 
cation of the noise diffusing from the phonon bath and the spontaneous emission into 
the Stokes mode. The noise in an isolated anti-Stokes mode would reach a limit pro- 
portional to fi,, , however, due to the coupling to the Stokes field the chaotic component 
in the anti-Stokes field also continues to increase with time. The distribution function 
for the individual Stokes or anti-Stokes modes may be obtained by integrating the 
joint P distribution over the opposite variable. 

6. Conclusions 

A fully quantum-mechanical treatment of Raman scattering from a phonon heat bath 
has been described using the master equation technique. The Hamiltonian formulation 
successfully describes the stochastic coupling of the Stokes and anti-Stokes fields 
through the phonon bath. This model reproduces the classical predictions for the 
coupled field amplitudes. In addition the photon distributions for the field modes are 
obtained from the solution of a Fokker-Planck equation. Whereas a classical analysis 
was only applicable to the stimulated Raman effect this treatment contains the spon- 
taneous and stimulated Raman effect in one self-consistent formalism. 
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